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ABSTRACT

On the basis of the results obtained in a series of papers [25] - [28], a

convergence theorem for Newton's method in Banach spaces is given, which

improves the theorems of Kantorovich [4], Lancaster (8] and Ostrowski [16].

The error bo,)iun obtained improve the recent results of Potra (17].
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SIGNIFICANCE AND EXPLANATION

To find sharper error bounds for iterative solution of nonlinear

equations under assumptions as weak as possible is of basic importance in

numerical analysis. This paper gives a convergence theorem for Newton's *%.*.. .

method in Banach spaces which improves the theorems of Kantorovich [4],

Lancaster [8] and Ostrowski [16]. The error bounds obtained improve the

recent results of Potra [17]. ..
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A CONVERGENCE THEOREM FOR NEWTON'S

METHOD IN BANACH SPACES

Tet suro Yamamot o

1. Introduction

There is much literature concerning convergence and error estimates for Newton's

method in Banach spaces. In a series of papers [25] - 128], we examined the error bounds

which have been obtained by many authors (Dennis [1], Tapia [241, Rall-Tapia [201, .-. '-

Ostrowski [15], [16], Gragg-Tapia [3], Miel [9] - [11], Potra-Pt~k [18], Moret [12]) un,

the assumptions of the Kantorovich theorem, and compared them with the Kantorovich :

bounds. As the result, we concluded [28] that their results follow from the Kantorov.

theorem so that, under the Kantorovich assumptions, the Kantorovich theorem still give ; .',t

the best upper bounds for the Newton method.

In this paper, we are interested in improving the assumptions of the Kantorovich

theorem and the assertions of the Ostrowski theorem [16; Theorem 38.1]. We shall first

state both theorems and several lemmas in 12. Next, in 13, we shall present a convergence

theorem which improves both theorems. It will also be shown that results improve the

error bounds of Lancaster (8], Kornstdedt [7] and Potra (17]. Finally, in §4, we shall

show that Ostrowski's other theorem [16; Theorem 38.2] can be derived by our approach.

2. Preliminaries

Let X and Y be Banach spaces and consider an operator F D C X + Y.

If F is Fr~chet differentiable in an open convex set Do C D, then the Newton method0-

for solving the equation 7!

*Department of Mathematics, Faculty of Science, Ehime University, Matsuyama 790, Japan.
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F(x) - 0 (2.1)

is defined by

Xn+ 1 - xn - F'(xn)'P(xn ) , n > 0 , (2.2)

provided that F'CXn)- C L(Y,X) exists at each step, where L(Y,X) denotes the Banach

space of bounded linear operators of Y into X. Sufficient conditions for convergence

of the iterates (2.2), error estimates and existence and uniqueness regions of solutions

are given by the famous Kantorovich theorem:

Theorem 2.1 (Kantorovich [4], (5] and Kantorovich-Akilov [6J). Let F : D C X + Y

be Frcht differentiable in an open convex set Do D. Assume that for some

x0  D0 , F'(x 0 ) is invertible and that

- .. ° .

IF(x 0  (F(x) - F'(y))I < KIx yl , K > 0, x, y C Do , .

IF'(x F(x )I < r , > 0
0 0

h - k<-

and

S(x.t*) Ix CX) ,x- x.I <t. - D

0 K -0

Then:

i) The iterates (2.2) are well-defined, lie in the open ball S(x0 ,t*) -

ix C Xlix - x0
1 
< t*} and converge to a solution x

e  
of the equation (2.1).

(ii) The solution x* is unique in S(x0,t**) n D if 2h < I and in S(x0 ,tee)

if 2h 1, where t** - ( + /I - 2h)/K.

(iii) Error estimates , -.-..- -.-- *

2nI n
n n 2 -l-( .... - .

Ix* - Xn < < 2 (2h) 2  TI , n > 0, (2.3) .

I + /1 - 2hn

hold, where n and hn are defined by the recurrence relations,..
n n

-2- %'
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Bn" n- n - -h n-I h B n >i1 (2.4)

I -h n(-1

(iii), Put f(t) X t2 -t + n~ and define the sequence it} by

Then

1x5 - x I < t* t n n 0, (2.5)

holds.

- The bounds (2.3) are of the form found in (4], while the bound (2.5) is found in (5)

and [6]. We should remark here that Bn and n are the bounds for *P"(x )F'(c

and Ox - x 1, respectively. 1n fact, by induction on n, we have
n+I n

IF'(x)n FI( x)I IJI + F'(x ) (P'(x) n - 'xnI)II'( - x0)

B1- BI x I= - B
n-i r- n-i B

-n~ Xn =F'(xn) 1 IF(x n)

= F*(xn )1 {(x) F(x)- FI(xn )(x -

n n n- n-I n -

and

1 B I 2 1 2
Ox I- x I B n~
n+I xn 2n n n-i .2 n n-i n

on the other hand, r~strowski [151, (161 proved the convergence of the Newton method

under the assumptions which are slightly different from those of Kantorovich.

-3-
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Theorem 2.2 (Ostrowski (15; Theorems 38.1 and 40.2)). Let F: D C X + Y and Do

be the interior of D. Assume that for some x0 C 0, F'(x 0 ) and F'Cx0 )
1  exist. Let

9 0, a - 1 + cosh v, p e e1X 1 - x0 1 and a - a*F(x 0)I.IF(x 0 -1 2 osde h

line segment L = tx0 * (1I t)x110 < t < 1} and the closed ball S= S(X1 ,p), and

put C L U S.Assume now that C C Do, F is Frfichet differentiable on C and

IF'(x) - FI(y)I <-1 Ix - yE , x, y c L, X, y f (2.7)

Then the Newton iterates (2.2) are well-defined, Xn c 5, n > 1, and Ix I converges to

a solution x* c S of (2.1), which is unique in C. Furthermore, the following

inequalities hold:

1* x I < e2nlV sinh cp Ix -

n =n-1 1 0sinh 2 (P
(2.8)

-n

-2.Ix nlI < e Ix+ - xI ,n > 0 (2.9)

In 1281, we derived (2.8) and (2.9) under the assumptions of Theorem 2.1 and showed

that they do not improve Gragg-Tapia's bounds. Furthermore, we proved that Moret's

bounds, which also follow from Theorem 2.1, are sharper than those of Gragg-Tapia, Potra-

Pt~k and Miel. The argument in [28] also works under the assumptions of an affine

invariant version of Theorem 2.2, which are weaker than those of Theorem 2.1 with

n= Ix1 -x1, provided that x0 # x. Therefore, on the basis of results obtained in

* [28], we can improve Theorems 2.1 and 2.2.

Before giving an improved version of both theorems, we state several lemmas. In the

following, without loss of generality, we assume that F(x 0) 0. This assumption will be

kept throughout this paper.

Iaa 2. 1. Let F: DC X +Y and bo be the interior of D. Assume that for some

x0~ D'~ F'(x0 ) and F'(x 0 ) 1exist and F(x )$0. let 0, a 1 + cosh ~
0 0

-4-



I x1 I x 01 p -e nf. Define the sets L, S and C as in Theorem 2.2.

Furthermore, assume that C C D , F is Fr~chet differentiable on C and, for some

K > 0,

IF'(x -1(F'(x) - PI(y))I < KIx - yI, x, y c L, x, y S,(2.10) e
0%e

and

Oh S czxn 1.

Then the iterates (2.2) are well-defined, x Sx,p) (open ball), n > 1 and
n S I

Ix -x I t -tn > 0, where {t}I is the iajorizing sequence defined in
n+1 nI tn+I tn n

Theorem 2.1. Therefore, the sequence Ix I converges to a solution x* c of (2.1) and

ix* - x I < t* - t

proof. By the assumption ah < 1, we have 2h < 1 since a > 2. Therefore, the

majorant theory of Kantorovich can be applied to the sequence Ixn}, by noting that the

condition (2.10) holds and that .,-
Ix - x x I + Ix x I

n+I 11 = 1n+l n n 1

= n+1 n) + n ti n+1

< t*--1t - h K A 2h *

<~~~~ e"nm 2.1

where equality holds in (2. 11) if and only if ah = .Q.E.D. ~.

Leana 2.2. Under the assumptions of Lemma 2.1, define the sequences

itn JBln1 inn} and {h n as in Theorem 2.1. Then ...

tn+1 tn nn

1 - l _-2
- t =n n

t* tn
n

and

. .. . . . . . .



n KB n O
n

That is, t - tn and t** - t1n are the solutions of the equation

1 2
SKB t -t + nl 0.

Proof. The same proof as in [28] works under the assumptions of lemmna 2.1. Q.E.D.

Lemma 2.3. Under the assumptions of lemma 2.2, we have for n > 1

.4
Ci) B 1-Kt A1-2h +(Kl

n n n-1

(ii) 1n+1

KB t* t
(iii) n -

1 + r -1 2hF (Vt )2
n n

where V denotes the backward difference operator.

Proof. See the proof of Proposition A.3 in [28]. Q.E.D.

Lema 2.4. Under the assumptions of Lemma 2.2, let 8=t*/t* =

(1 V1ii 2h)/(1 + v/l- 2). Then we have for n > 0

2 j- h
2h/ (2h < 1)

K2 
n

t* tn 1-
2 I(2h =1

t*Vt tn1 6

n+ 1

Proof. See the proofs of Proposition A.1 and Proposition A.4 (ii)

in [281. Q.E.D.



jam 2.5. Under the notation and assumptions of Lemma 2.4, we have for n 0

-2n19sinh (P )0
n-1 - .

~ - tnnh 2 V

{:1jn!silim e ,n-1P sinh v~t)C 0)
9++0 sinh 2 1P

2 < -2n,,

The equalities hold in Mi and (ii) if and only if ah 1.

Proof. Take V > 0 such that CL~h 5(1 + cosh WP*)h 1. Then, by Proposition A..4

in [28], we have that the equalities hold in Ci) and (ii). Therefore Lemma 2.5 follows

for every T c [0,9*], since the right hand-sides of Mi and (ii) are monotone decreasing

I- with respect to 9. Q.E.D.

we end this section by proving the following lemma.

Lam 2.6. Under the assumptions of Lemma 2.1, define the sequence (B ni as in

Theorem 2.1. If, for some n, there exists a constant Mn > 0 such that

n+x1  M n ni'- I

and Mn<~.ThenMn Kn

2d

Inn
where dn n -x <l. n

n+n n

Proof. Without loss of generality, we may assume that d 0 0, that is x' y x
_ _n n

*Then, by assumptions, we have

Rx*- N- <
1 M %* x 

2 < 1 B x* xI 12
n n=2n n = 2 n n

Hence, if we put

~(t) I-M t 2 t +d and ~(t) -KBt' -t +d
n 2n n n 2 n n

-7-
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then (1X. X )> N.. )

n n = n n

0 (t) > 0 (t) for t > 0 or 0 (t) * (t).
n n n n -

By Lemmas 2.1 and 2.2, we have6

Ix* -X I < t* - t
n n

and t* - t1n, t** - tn are two solutions of the equation TI (t) = KB t2- t + =.
n 2 n n

Furthermore we have T' (t) > 0(t). Therefore 0(t) and 0(t) have positive solutions
n =n n n

aa and aa respectively such thatn an an an

a < a t* tn =< tn ; *n if* ~
oy (a <t -t < t -t <a a if m4 KB an d<q
n n = n=n n n n n

0 = (t -t <t -t (a =0 if m4 KB and d (n n n= n ni n n n n n

Inan cas we have*

a1 x=a <t a t ( t = a i 4=B add=
n n = n n

sic f Nx x -)>0ipsN x 0 < 0y o x
n ~ ~ n nn

adthe latter case can be excluded. Q.E.D.

3.Reut

We are now in a position to prove the following theorem!.

Theorem 3.1. Under the assumrptions -,-ma 2. 1, the following results hold:

(i) The iterates (2.2) are well-defined, the sequence Ix ~,n > 1 remains in an

open ball S =S(x 1 ,p) and convterqes to a solu-tion x * S of the equation 2.1).



(ii) The solution is unique in C. ,1Mz

iii) Lot

IF'(Cx)-1 (7 Cx) -F' (y) ) I4
K n sup l-y ,1 n1,A

K 0 x6

and put dn I x 1 - 1C. Thien the following error estimates hold. %. .

* Ca) A posteriori error estimates:

Ix*~ x. I. < 2 n ) (.1

2Y

(t* 2n

2n (n 0)

I+/ -l 2h .

2d -:--rI~ 1  %) d 33

n
- (t>(32

2
nd ( n > ) (3.3)P~k[11

I + h 2(I td
n- n

-t

nd (n > 1) (Kiel [10)

n-A.

-. . . . . . . . .t . .

n %

___~ ~~~~~~ d__ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ (n*'' 1) (K el (1



---------- ~ ... . . T -. ..- -. Y. T ~ --Ik .- *~* ~ = . . -

e dn-1d (n > 1) (Gragg-Tapia [3])

n-1

< e" Td (n > 1) (Ostrowski (16]). (3.4)

The equality holds in (3.4) if and only if ch - 1.

(b) A priori error estimates:

Ix* - XI < t* - t (n > 0) (Kantorovich (5], (6])
n n

K1 -2h(2h<"1)
2

1-n
2 n (2h 1) (n > 0) (Gragg-Tapia (3]) ,-.

e-2 sin" 0)
sinh 2 n-1 4P

<i, (3.5)

21-n = 0) (n > 0) • (Ostrowski [16])

The equality holds in (3.5) if and only if ah - 1.

(iv) If F is Fr~chet differentiable in an open convex set D0 such that Do D D 0 C

and if F'(x) satisfies the Lipschitz condition in Do  with the Lipschitz constant K,

then the solution x* is unique in

fs(x0 t*-) 0 D if 2h < I

S(xo,t.r)f Do  if 2h - I.

00Furthermore, (3.2) may be replaced by the sharper bound 
0',-. '

2d
nx* - xn I < (n > 0) (Moret (12]) (3.6)

n 
I1 + 2K(l KA) d

n n

where An = X - xo 1.'C.''"

-10-
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Proof. (M) was proved in lemma 2.1. To prove (ii), let x be a solution in S.

Then we have

+x no x + F'(x) (x n )

F-(x ,' {" (;) - F(2.) - F' *- x

nn n)( n,)

x0'( r ,( f (x )Ifp(K t; x -,( x )dt
n 0 0 n n n n~~h

0l

and

x + t(x*- x ), x e, n > 1.
n n n

Hence, by (2.10) and Lema 2.3 (ii) we have

Ix* 10IK~x*~-n
12 = t~ I -Xn 2 *I"""
2n+n 2 (Vtn)2 2

%+ 2~ n n

so that

n1* n
VtI -x 1  __x __- 2l Ix -x 2l 2n "'.'

nt Vt ) ---
mm Vtn+1 < tn .. "V "1  ) _< _1• 'Z.,

This implies

=x I Xn < Vt + 0 . ..n+1 . n+1

as n * -. Thus we obtain x - lim x = x*. Next, we shall show that there is no

solution in C\S, provided that the set C\i is not empty. To show this, let x be a

solution in C\i. Then we have

fl= x-x1 ~ 1 - x0 2 1 2 1 - e)22

e- KIx - K( - O) K(1 .n

so that

I C X-(cosh op 1)7 - K(- 2)n.< 1 - 2h

which is a contradiction. This proves the uniqueness of the solution in C. To prove

(iii), we first observe that

-11- I ..
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x*- x = -F'(x f {F'(x + t(x* - x )) - F'(xn )I (x* - x )dtn1 n 0 n n n

x + t(x* - x), x c 5, n > 1

F'(x n) II + F(x 0 ) -1 (Fl(x) - Ft(x 1 )) + F'lx 0)-1 (F'(x) - F'(x 0l))}'F'(x 0 )
1

and ':: ,

Xn x S, n > 1, x 1, x e L

Hence we have from Lemna 2.3 (i)

-1 1.

n(n= n > )( . )" ' % -
IF..x )P'x )I < B 1 - K(Ix n - X1 1 + d ) (3.))

.
<

=1-Kt n

and

1"" I 12 <1 '* x 12 1 .-.: 12
n+1 =2 n n - 2 n n 2 n n

Therefore Lemma 2.6 can be applied to obtain the bounds (3.1) - (3.3) for n > 1. Observe

that if n - 0, they reduce to the Kantorovich bound t* = 2n/1 + /1 - 2h). The other

part of (iii) follows from Lemmas 2.2 - 2.5. This proves (iii). Finally we shall prove

( Civ). Let F be Frichet differentiable in an open convex set Do  such that ".. %
Do D DO D C and F'(x) satisfy the Lipschitz condition (2.10) in Do.  Then (3.7) may be

replaced by the sharper estimate

IF( - F'(x )I < 1 , n > 0
n 0 =1- n- 0

Therefore, Lemma 2.6 can again be applied to replace (3.2) by (3.6). To prove the

. uniqueness of solution in S, let x be a solution in S. Then there exists a .-

nonnegative constant r such that r < 1 if 2h < 1, r <1 if 2h =1 and

Ix - xli _( rt*. By induction on n, we can show that

0"
2n

Ix Ixl < r (t** - t) n > 0 (3.8)

-12-
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In fact, we have under our assumptions

W * -
x 
"

1SI Knr 2  n.m

< r (t** - tn )
2

- r (t* - n -n

* 2n+1

-r (t** - n+)

where we have used the induction hypothesis and Lema 2.2. This proves (3.8), from which

we obtain

-*xl 1 0

n

as n + -, since r * 0 if 2h < 1 and t** - t n - t* - t n  0 if 2h - 1. Hence we

have x - lim x - x*, which implies the uniqueness of solution in S. Q.E.D.

Assumptions similar to those of Theorem 2.2 or Lema 2.1 were also adopted by I.. ...- ,.

Lancaster (81, and later by Schmidt [22], (23] for the generalized secant method which .- .

includes the Newton method as a special case. Lancaster's assumptions corresond to the

case 9 " 0 in Lemma 2.1, while Schmidt's correspond to the case where 9 is chosen so ,.. '

that ah -1, in which case we have p - en - t* - n. In the following we shall W.-,'.'

improve Lancaster's result. (In the case of the Newton method, Schmidt's upper bound

reduces to the Xantorovich bound t* - tn . Also see (28].)

Corollary 3.1.1. Let F: D C X + Y and Do be the interior of D. Assume that

for some x0 C D
°, F'(x 0 ) and F'(x 0 )

1  exist, F'(x 0 ) 0 and F is Frdchet

differentiable on S0 - S(XlX I - X01). Furthermore, put

IF(x 0 (F'(x) - F'(y))"

L sup
x, Ix Sox,y4

° 0

x . . . * ...-.. . .

-13
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If 21, Ox -x I 1, then the Newton process (2.2) generates a sequence ex
0 1 0 f*n :'

which converges to the unique solution x* of (2.1) in So* If we put

IF'Cx )(F'Cx) -F'Cy))l % -
nn

and

dn Ixn+1 xn 1 n >0,

then the following error estimates hold:

2d
-* x I < 5 6 (n >0)

n = n i I~ T dii.

2Ln dn-i (n > 1)

21+ A (L d
n n-1

2
L d_ 1 d n-

n- ni(n >1) (3.9)

1 -L d + V1 21
n-I n-I n-i n-i

L d2
n- n- (n >1) .(3.10)

=1-L d_
n-i n-i

Proof. Put =0 in Theorem 3.1. Then Corollary 3.1.1 follows from Theorem 3.1 by

noting that .6

d <-1L d 2 and L <- n1 n>1.QED
n =2 n n-1 n =1- L n1d ni. Q..

The bound (3.10) is due to Lancaster [8) and (3.9) is what Potra cited in his recent

paper (17] as Kornstaedt's bound (71.

-14-
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Corollary 3.1-2. Under the notation and assumptions of Corollary 3. 1. 1, we have

I*- x I < ( n > 0)
0t 0 n-f

=21F'(x) P~x)I
< n>0 (3.11)

I~~~ ~ ~ L 1.A 2 '(x) r(x 'd

0n (n > 1 (3.12)

I-L A L11 L )2  (L Ld 2
0On On '0 n-i

where A -Ix x x0 .

Proof. it is easy to see that ..

LO

OnI

and

d< UFI(x ft ~ '(x )i.ire(x ol (1 )I

I-LAIFiIxo F(x )I
LOn

Furthermore, we have

F~x)1 F ) F Ka)
1
1F(x) F(x~)- F*(x iC

=F'(x 0 )
1 I1(1(11 + t(xn - F'(X -Q}(x n xn1 )dt

0

So that

IF*(x )F(x )I < 1 2o.,
0 n ~ 1 ,f

Therefore, Corollary 3.1.2 follows from Corollary 3.1.1. Q.E.D.

-15-
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Remark 3.1. The bounds (3.11) and (3.12) were recently obtained by Potra [17] under

the assumptions of Theorem 2.1 as B(A, *F(x) F(x)EM and 0 (A ,d 1~respectively

in his notation.

We can further improve the bound 6 obtained in Corollary 3.1.1.
n

Corollary 3.1.3. Under the assumptions of Corollary 3.1.1, put M0 = L0  and for

S S(x n 2I1F'(x )-F(x I)n n n n v " \*''

IF'(x )-(F'(x) -F'(y))
Mn x sup IX - y.

x Fy
Then we have

XoS C C.... C0
x Sn - n-i - ""- 0'" •

and
2d

I*- xn I < <n 6 n n > 0': -p.'. "-_____-__
n 6, n' 0 ..N 1 + / -- 2M n d. d

n n
Proof. This immediately follows from Lemma 2.6 by noting that 2d <d and

n+1 -n

1n 2 1 2
1X * ~ -n Xn< -( LnX -X > .QED .--

Remark 3.2. As was remarked in [17], the cost of obtaining Kn, Ln  or Mn might be

very high. Therefore, in practical computation, it would be better to make use of one of .,-. -

(3.2), (3.3), (3.6) and (3.12). However, Theorem 3.1 and its Corollaries assert that the

error bounds which have been obtained by many authors with the use of different techniques

can be derived from the majorant theory of Yantorovich and Lemma 2.6, in a unified manner.

Theorem 3.2. Under the assumptions of Lemma 2.1, we have

Vt V
n+1 2 Vtn+1 d

n = (Vt 2 n-, 1 Vt n n-i
n

Sni n > 1 (3.13)=2 cosh 2n I "-.-.'.•

The equality holds in (3.13) if and only if Oh = 1.

-16-
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Proof. It follows from (2.6) and Lemma 2.3 (11) that

d 2n  V n+ 1 d2 tn+ 1 -. .2 .1V't-%

d- < KB d _1 d2 
< t  

In-1(3.14) %"

n =2 n ni 2 n-I - Vt n-i(Vt)n n

Choose V _ 0 such that (1 + cosh V*)h - 1. Then, from Lemmas 2.4 and 2.5, we have

sinh i* n ( * > 01
t+1.en,(. tn1l = > s0h2 :''...'2:

Vt 2" (* -t si0h 2n 1*
'+1 n+1 '

2 i W~ 0)

Hence n 1

sinh 2

Vt n W > 0)
- = sinh'-

( 0) . ..

21
2 < (3.15)

2 cosh 2 n'1 v * 2 cosh 2 n-I T

for every 4 e (0,4]. The equality holds in (3.15) if and only if 0 T *. This,

together with (3.14), proves Theorem 3.2. Q.E.D. .%"

Remark 3.3. The bound (3.13) is of the form found in Ostrowski (16; Theorem 38.2].

4. (boervation

Under the assumptions of Theorem 2.2, Ostrowski proved that

( n-i 2
(sih 2 400

mIFnm ) sinh 2 n~- (4.1)> 0
iF(x )I < 14.1)

Sinh 2n-1 2 . .
2 m m'-rn (n O 0)

4F++0 sinh 2 "'

n>0, m > 0
2m

-17-
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provided that F(xn) ~'0. By our approach, we can easily derive his estimates. rat

II )I -1)I i2
K=a-1, B IF'(x 0 0, n ilF(x )I 2~t 1 -~~ n. Furthermore, we define

the sequence nB and 'n1b

BO= B, T1.O = , ho KB Ti0 ,

o h -

- n-i - n-i n-1 -

n - n - n n n n~ >

Then it is easy to see that

n n n+i n =n

and

Fx F(x +f 'x+tx -xM x)d

-f IF - F'(x +tx )Ix)'~ d

Hence we have

*n+i 2 n - Xnf n) -1

IF(x )I -

Define the sequence b

to n n > =2

Then, by Lemmas 2.2, 2.4 and 2.5, we have
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nt ne n t tn+I)

(sinh 9, ( )0)

sin 2 n ( .3
2 (n 0).

since a~h, whr 1, 0 A 29,- - Therefore, we have from (4.2) and (4.3)

IFx 1 )I J in 2 n-h22%) 2 (9 > 0)

IF(x )1
n '(9=-0).

This leads to the estimate (4.1). Therefore, together with (3.13) which holds in our

case, we proved the main part of his theorem [161 Theorem 38.23. The remaining part also t
follows from our approach.

Finally we remark that the chart for the lower bounds given in [28] is still true

under the assumptions of Lemma 2.1 with a slight modification:

Ix* xl I ) d (n > 0)
I +1VI1+2K 4

n~ n

2d

2h 2d (4.4) *-

1 /1+n x 1d (n > 1)
n11-KI 1 0 n

2d

= _________ (n 0) (Kiel (11), Schmidt (23])

1 + VI + 2K(1 Kt )dn n

-19-
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-2Kd%

+* +

1 4+Kd +2A - 2h + (xd 2 ~ 0 Ptr-tk(8

n n

2d
n

> (n > 0) (Gragg-Tapia (3]).
-1 + /1 +2 2h

n

If the assumptions of Theorem 3.1 (iv) are satisfied, then (4.4) may be replaced by the

sharper lower bound

2d .-

Ix* -x I > n(n > 0) (Yamamoto [28])

1+ A- 2( KA ) ld
n n . -

We also have

2d
-xl En n n>0,

n = n 1 +V1 +214 d
n n

with the notation and assumptions of Corollary 3.1.3.

Acknowledgements. The author wishes to thank Professor L. B. Rail of the

Matehematics Research Center, University of Wisconsin-Madison and Professor R. K. Guy ofj the University of Calgary for bringing the theorems of Ostrowski and Lancaster

respectively to his attention.

-20-



, '-. . . -

lefeences

[1]. J.E. Dennis, Jr., On the Kantorovich hypothesis for Newton's method, SIAM J.

Numer. Anal., 6 (1969), 493-507.

[2] P. Deuflhard and G. Heindl, Affine invariant convergence theorems for Newton's

method and extensions to related methods, SIAM J. Numer. Anal., 16 (1979), 1-10.

[31 W.B. Gragg and R.A. Tapia, Optimal error bounds for the Newton-Kantorovich theorem,

SIAM J. Numer. Anal., 11 (1974), 10-13.

[4] L.V. Kantorovich, On Newton's method for functional equations, Dokl. Akad. Nauk.

SSSR, 59 (1948), 1237-1240. "

[51 L.V. Kantorovich, On Newton's method, Trudy Mat. Inst. Steklov, 28 (1949), 104-144.

[6] L.V. Kantorovich and G.P. Akilov, Functional Analysis in Normed Spaces, Pergamon

Press, Oxford, 1964.

[7] H.J. Kornstaedt, Funktionalungleichungen und Iterationsverfahren, Aequat. Math., 13

(1975), 21-45.

[8] P. Lancaster, Error analysis for the Newton-Raphson Method, Numer. Math., 9 (1966),
55-68. 2ii 1

[9] G.J. Miel, The Kantorovich theorem with optimal error bounds, Amer. Math. Monthly,

86 (1979), 212-215.

[10] G.J. Miel, Majorizing sequenc?s and error bounds for iterative methods, Math.

Comp., 34 (1980), 185-202.

[11] G.J. Miel, An updated version of the Kantorovich theorem for Newton's method,

Computing, 27 (1981), 237-244. e

*(12] I. Moret, A note on Newton type iterative methods, Computing, 33 (1984), 65-73.

(13] J.M. Ortega, The Newton-Kantorovich theorem, Amer. Math. Monthly, 75 (1968), 658-

660.

[14] J.M. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in . ..

Several Variables, Academic Press, New York, 1970.

,. - -.

-. . . . . . . .. - . . . . . . .' ..-. " . . .

-21[.[;[i[211.,-

%iiii','



%

pg 94

. . .,

(151 A.M. Ostrowski, La m~thode de Newton dans les espaces de Banach, C.R. Acad. Sci.

Paris, 27 (A) (1971), 1251-1253.

[16] A.M. Ostrowski, Solution of Equations in Euclidean and Banach Spaces, Academic

Press, New York, 1973.

(17] F.A. Potra, On the aposteriori error estimates for Newton's method, Beitr~ge zur
h

Numerische Mathematik, 12 (1984), 125-138.

[18] F.A. Potra and V. Pt~k, Sharp error bounds for Newton's process, Numer. Math., 34

(1980), 63-72.

[19] L.B. Rall, Computational Solution of Nonlinear Operator Equations, Krieger,

Huntington, New York, 1979.

[20] L.B. Rall and R.A. Tapia, The Kantorovich theorem and error estimates for Newton's

method, MRC Technical Summary Report #1043, University of Wisconsin, 1970.

[21] W.C. Rheinboldt, A unified convergence theory for a class of iterative process,

SIAM J. Numer. Anal., 5 (1968), 42-63.

[22] J.W. Schmidt, Regular-falsi-Verfahren mit Konsistenter Steigung und

Majorantenprinzip, Periodica Math. Hungarica, 5 (1974), 187-193.

[23] J.W. Schmidt, Untere Fehlerschranken fUr Regular-falsi-Verfahren, Periodica Math. I
Hungarica, 9 (1978), 241-247.

(241 R.A. Tapia, The Kantorovich theorem for Newton's method, Amer. Math. Monthly, 78

(1971), 389-392.

[25] T. Yamamoto, Error bounds for Newton's process derived from the Kantorovich .'-

theorem, to appear in Japan J. Appl. Math., 2(1985).

[26] T. Yamamoto, Error bounds for Newton's iterates derived from the Kantorovich

theorem, MRC Technical Summary Report #2843, University of Wiconsin, 1985.

[27] T. Yamamoto, A unified derivation of several error bounds for Newton's process, J..

Comp. Appl. Math., 12 &13 (1985), 179-191.

f28] T. Yamamoto, Error bounds for Newton-like methods under Kantorovich type

0 assumptions, MRC Technical Summary Report #2846, University of Wisconsin, 1985. S

-22-

S 0

*....................................



SECURITY CLASSIFICATION OF THIS PAGE (Whe Data Entere

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEPORE COMPLETING FORM

I. REPORT NUMBER 2. OVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
#2879

4. TITLE (and Subtitle) $. TYPE OF REPORT A PERIOD COVERED

A CONVERGENCE THEOREM FOR NEWTON'S METHOD Summary Report - no specific

IN BANACH SPACES reporting period
S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(*) S. CONTRACT OR GRANT NUMBER(s)

iTetsuro Yamamoto DAAG29-80-C-0041

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Mathematics Research Center, University of Ao rk Unit NUMBERSWork Unit Number 3-
610 Walnut Street Wisconsin Numerical Analysis and
Madison. Wisconsin 53706 Scientific Computing

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U. S. Army Research Office October 1985 .

P.O. Box IZ2l IS. NUMBER OF PAGES

Research Triangle Park, North Carolina 27709 22
14. MONITORING AGENCY NAME S ADDRESS(ll diffeet from Controlling Office) 1s. SECURITY CLASS. (of thi report)

UNCLASSIFIED -

IS. DECLASSIFICATION/DOWNGRADING 9SCNEDULE ..... :!

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstra t antered if Block 20, il different bom Report)

I. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side it ncseea.y and identify by block number)

convergence theorem, Newton's method, Kantorovich's theorem,
Lancaster's theorem, Ostrowski's theorem, error estimates,

Potra's bounds

20. ABSTRACT (Continue on reverse aid* If necessary ind identify by block number) P I

On the basis of the results obtained in a series of papers [25] - [28],
a convergence theorem for Newton's method in Banach spaces is given, which '.

improves the theorems of Kantorovich [4], Lancaster [8] and Ostrowski [16]. -
The error bounds obtained improve the recent results of Potra [17].

DD I JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Wien Data Entered)

" . -" . . ..

-- + -* -- - .- . .. ,_._ . . . ._ .. . . . .. . . . . . . . . . . .... . . . . . .-.. . . . . . .".". ." . .' - . ... ,. . ... . _- ... * ." + .. . . . ,.



J 
* i 

-

FILMED

DTIC
-r " e.

5-%. .__


